Emotion and Learning: Solving Delayed Reinforcement Learning Problem Using Emotionally Reinforced Connectionist Network

نویسندگان

  • Stevo Bozinovski
  • Liljana Bozinovska
چکیده

The DRL (Delayed Reinforcement Learning) problem is classical in Reinforcement Learning theory. There were several agent architectures solving that problem including some connectionist architectures. This work describes an early connectionist agent architecture, the CAA architecture, that solved the problem using the concept of emotion it its learning rule. The architecture is compared to another classical DRL problem solving architecture, the Actor/Critic architecture. Possible implication to reinforcement learning theory is pointed out.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reducing the academic burnout of students with learning disabilities through attributional retraining, emotional regulation, and cognitive-social problem solving

objective: The aim of this research was to investigate and compare the effectiveness of attributional retraining program, emotion regulation and cognitive-social problem solving on reduction of academic burnout in students with early learning disabilities in Tehran. Method: This was a quasi-experimental study with pretest-posttest,and follow up. The participants consisted of 40 students with le...

متن کامل

A Constructive Connectionist Approach Towards Continual Robot Learning

This work presents an approach for combining reinforcement learning, learning by imitation, and incremental hierarchical development. The approach is used in a realistic simulated mobile robot that learns to perform a navigation task by imitating the movements of a teacher and then continues to learn by receiving reinforcement. The behaviours of the robot are represented as sensation-action rul...

متن کامل

Convergence of teams and hierarchies of learning automata in connectionist systems

Learning algorithms for feedforward connectionist systems in a reinforcement learning environment are developed and analyzed in this paper. The connectionist system is made of units of groups of learning automata. The learning algorithm used is the LR-I and the asymptotic behavior of this algorithm is approximated by an Ordinary Differential Equation (ODE) for low values of the learning paramet...

متن کامل

Behavioral Analysis of Team Members in Virtual Organization based on Trust Dimension and Learning

Trust management and Reputation models are becoming integral part of Internet based applications such as CSCW, E-commerce and Grid Computing. Also the trust dimension is a significant social structure and key to social relations within a collaborative community. Collaborative Decision Making (CDM) is a difficult task in the context of distributed environment (information across different geogra...

متن کامل

A Multiagent Reinforcement Learning algorithm to solve the Community Detection Problem

Community detection is a challenging optimization problem that consists of searching for communities that belong to a network under the assumption that the nodes of the same community share properties that enable the detection of new characteristics or functional relationships in the network. Although there are many algorithms developed for community detection, most of them are unsuitable when ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002